Податотека:QuantumHarmonicOscillatorAnimation.gif
Од testwiki
Прејди на прегледникот
Прејди на пребарувањето
QuantumHarmonicOscillatorAnimation.gif (300 × 373 пиксели, големина: 759 КБ, MIME-тип: image/gif, кружно, 97 кадри)
Оваа податотека е од Ризницата и може да се користи во други проекти. Описот од нејзината описна страница е прикажан подолу.
Опис
ОписQuantumHarmonicOscillatorAnimation.gif |
English: A harmonic oscillator in classical mechanics (A-B) and quantum mechanics (C-H). In (A-B), a ball, attached to a spring (gray line), oscillates back and forth. In (C-H), wavefunction solutions to the Time-Dependent Schrödinger Equation are shown for the same potential. The horizontal axis is position, the vertical axis is the real part (blue) or imaginary part (red) of the wavefunction. (C,D,E,F) are stationary states (energy eigenstates), which come from solutions to the Time-Independent Schrodinger Equation. (G-H) are non-stationary states, solutions to the Time-Dependent but not Time-Independent Schrödinger Equation. (G) is a randomly-generated superposition of the four states (E-F). H is a "coherent state" ("Glauber state") which somewhat resembles the classical state B.
العربية: مذبذب توافقي في الميكانيكا الكلاسيكية (A-B) وميكانيكا الكم (C-H). في (A-B)، كرة متصلة بنابض (خط رمادي)، تتأرجح ذهابًا وإيابًا. في (C-H)، يعرض حلول الدالة الموجية لمعادلة شرودنغر المعتمدة على الوقت لنفس الإمكانات. المحور الأفقي هو الموضع، والمحور العمودي هو الجزء الحقيقي (الأزرق) أو الجزء التخيلي (الأحمر) من دالة الموجة. (C ،D ،E ،F) هي حالات ثابتة (حالات الطاقة الذاتية)، والتي تأتي من حلول معادلة شرودنغر المستقلة عن الزمن. (G-H) هي حالات غير ثابتة، وهي حلول لمعادلة شرودنغر التي تعتمد على الوقت ولكنها ليست مستقلة عن الوقت. (G) هو تراكب أنشىء عشوائيًا للحالات الأربع (E-F). H هي "حالة متماسكة" ("حالة جلوبر") تشبه إلى حد ما الحالة الكلاسيكية B. |
Датум | |
Извор | сопствено дело |
Автор | Sbyrnes321 |
(* Source code written in Mathematica 6.0 by Steve Byrnes, Feb. 2011. This source code is public domain. *) (* Shows classical and quantum trajectory animations for a harmonic potential. Assume m=w=hbar=1. *) ClearAll["Global`*"] (*** Wavefunctions of the energy eigenstates ***) psi[n_, x_] := (2^n*n!)^(-1/2)*Pi^(-1/4)*Exp[-x^2/2]*HermiteH[n, x]; energy[n_] := n + 1/2; psit[n_, x_, t_] := psi[n, x] Exp[-I*energy[n]*t]; (*** A random time-dependent state ***) SeedRandom[1]; CoefList = Table[Random[]*Exp[2 Pi I Random[]], {n, 0, 4}]; CoefList = CoefList/Norm[CoefList]; Randpsi[x_, t_] := Sum[CoefList[[n + 1]]*psit[n, x, t], {n, 0, 4}]; (*** A coherent state (or "Glauber state") ***) CoherentState[b_, x_, t_] := Exp[-Abs[b]^2/2] Sum[b^n*(n!)^(-1/2)*psit[n, x, t], {n, 0, 15}]; (*** Make the classical plots...a red ball anchored to the origin by a gray spring. ***) classical1[t_, max_] := ListPlot[{{max Cos[t], 0}}, PlotStyle -> Directive[Red, AbsolutePointSize[15]]]; zigzag[x_] := Abs[(x + 0.25) - Round[x + 0.25]] - .25; spring[x_, left_, right_] := (.9 zigzag[3 (x - left)/(right - left)])/(1 + Abs[right - left]); classical2[t_, max_] := Plot[spring[x, -5, max Cos[t]], {x, -5, max Cos[t]}, PlotStyle -> Directive[Gray, Thick]]; classical3 = ListPlot[{{-5, 0}}, PlotStyle -> Directive[Black, AbsolutePointSize[7]]]; classical[t_, max_, label_] := Show[classical2[t, max], classical1[t, max], classical3, PlotRange -> {{-5, 5}, {-1, 1}}, Ticks -> None, Axes -> {False, True}, PlotLabel -> label, AxesOrigin -> {0, 0}]; (*** Put all the plots together ***) SetOptions[Plot, {PlotRange -> {-1, 1}, Ticks -> None, PlotStyle -> {Directive[Thick, Blue], Directive[Thick, Pink]}}]; MakeFrame[t_] := GraphicsGrid[ {{classical[t + 2, 1.5, "A"], classical[t, 3, "B"]}, {Plot[{Re[psit[0, x, t]], Im[psit[0, x, t]]}, {x, -5, 5}, PlotLabel -> "C"], Plot[{Re[psit[1, x, t]], Im[psit[1, x, t]]}, {x, -5, 5}, PlotLabel -> "D"]}, {Plot[{Re[psit[2, x, t]], Im[psit[2, x, t]]}, {x, -5, 5}, PlotLabel -> "E"], Plot[{Re[psit[3, x, t]], Im[psit[3, x, t]]}, {x, -5, 5}, PlotLabel -> "F"]}, {Plot[{Re[Randpsi[x, t]], Im[Randpsi[x, t]]}, {x, -5, 5}, PlotLabel -> "G"], Plot[{Re[CoherentState[1, x, t]], Im[CoherentState[1, x, t]]}, {x, -5, 5}, PlotLabel -> "H"]} }, Frame -> All, ImageSize -> 300]; output = Table[MakeFrame[t], {t, 0, 4 Pi*96/97, 4 Pi/97}]; SetDirectory["C:\\Users\\Steve\\Desktop"] Export["test.gif", output]
Лиценцирање
Јас, праводржецот на ова дело, со ова го објавувам истото под следнава лиценца:
Оваа податотека е достапна под лиценцата Криејтив комонс CC0 1.0 Предавање во јавна сопственост. | |
Лицето поврзано со делото со овој документ го има предадено истото во јавна сопственост, откажувајќи се од сите права на тоа дело за цел свет, под законот за авторско право и поврзани или сродни законски права што ги имало на тоа дело, дотолку колку што е дозволено со закон. Делата под CC0 не бараат припишување (наведување автор и/или извор). Кога го наведувате делото, наводот не треба да подразбира каква било поддршка од авторот.
http://creativecommons.org/publicdomain/zero/1.0/deed.enCC0Creative Commons Zero, Public Domain Dedicationfalsefalse |
Предмети прикажани на податотекава
прикажува
Некоја вредност без предмет на Википодатоци
27 февруари 2011
Историја на податотеката
Стиснете на датум/време за да ја видите податотеката како изгледала тогаш.
Датум/време | Минијатура | Димензии | Корисник | Коментар | |
---|---|---|---|---|---|
тековна | 10:16, 2 март 2011 | 300 × 373 (759 КБ) | wikimediacommons>Sbyrnes321 | Alter spring, to avoid the visual impression that the ball is rotating in a circle around the y-axis through the third dimension. |
Употреба на податотеката
Податотекава се користи во следнава страница: